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Actuarial modelling

• X characteristics of a policyholder

• N number of claims (E[N | X ] =frequency)

• Y cost of a claim (E[Y | X ] =severity)

Pricing principle = balance (in average) the cost of a policyholder and the
commitments of the insurer

π(X) = E[N | X ]E[Y | X ]

• π(X) = premium of the insurance contract of a policyholder with
characteristics X

• Common assumption: Y and N are independent given X

Reserving = Need to estimate the whole conditional distribution of N and Y given
X
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Extreme claims

• Risk management

• Extreme event: some value
exceeds a (high) threshold

• Lack of data and/or historical
information

• Present some heterogeneity

⇒ Evaluating the potential cost of extreme risks is a challenging task
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Objectives of the presentation

Main goals
1. Study extreme claims

2. Gain further insight on their heterogeneity

3. Analyse the impact of characteristics on extreme claims

Focus on

• Tail of the distribution

• Severity of extreme claims

⇒ Two statistical tools :

1. Extreme value theory

2. Regression and classification trees
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Statistical tools
Extreme Value theory



Extreme Value Theory
Goals of Extreme Value Theory

Goals of Extreme Value Theory
1. Estimate extreme quantiles

2. Estimate the occurrence probability of an event more extreme than previously
observed

⇒ Inference outside of the range of the data
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Extreme value theory
Peaks over threshold method

• Y1,Y2, . . . series of i.i.d. random variables

• Fix a (high) threshold u

• Extreme event = Yi exceeds u
→ Given that Yi > u, define the excess Xi = Yi −u
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Extreme value theory
Peaks over threshold method

• Y1,Y2, . . . series of i.i.d. random variables

• Fix a (high) threshold u

• Extreme event = Yi exceeds u
→ Given that Yi > u, define the excess Xi = Yi −u

Balkema and de Haan (1974)

If there exist (au) > 0, (bu) and a non-degenerated distribution function H such
that,

P[Yi −u Ê aux+bu | Yi > u]
d−−−−→

u→∞ 1−H(x) ,

then H is necessarily of the form

Hσ,γ(x) =
{

1− (
1+ γ

σx
)−1/γ

if γ 6= 0

1−exp
(− x

σ

)
if γ= 0

• Possible limits of excesses = Parametric family of distributions
,→ Generalized Pareto Distributions

6



Extreme value theory and regression models

• Goal : estimate γ(X) where γ(X) is the tail index of the distribution of Y |X .

• Existing methods :
• Semi-parametric approaches

• Exponenial regression model (Beirlant et al., 2003)
• Smoothing splines (Chavez-Demoulin et al., 2015)

• Non parametric approach (Beirlant and Goegebeur, 2004)
• Local polynomial maximum likelihood
• Only for continuous covariates
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Statistical tools
CART algorithm



Classification And Regression Trees (CART)

Regression tree (Breiman et al., 1984)

m∗ = arg min
m∈M

E[φ(Y ,m(X))],

• Y is a response variable (the cost of a cyber claim in our case)

• X ∈X ⊂Rd is a set of covariates

• M is a class of target functions on Rd

• φ is a loss function that depends on the quantity we wish to estimate
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Growing phase
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Growing phase

Splitting rules

x = (x(1), . . . ,x(d)) −→ Rj(x)

with
Rj(x) = 0 ou 1

Rj(x)Rj′ (x) = 0 for j 6= j′∑
j Rj(x) = 1
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Growing phase
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Growing phase

Regression estimator m̂R(x) of m∗ given by

m̂R(x) =
s∑

j=1
m̂(Rj)Rj(x) where m̂(Rj) = arg min

m∈M

n∑
i=1

φ(Yi,Xi)Rj(Xi)
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The splitting rule and loss functions

• Quadratic loss → Mean regression

φ(y,m(x)) = (y−m(x))2

,→ m∗(x) = E[Y | X = x]

• Absolute loss → Median regression

φ(y,m(x)) = |y−m(x)|

,→ m∗(x) = conditional median

• Log-likelihood loss, here GPD

φ(y,m(x)) =− log(σ(x))−
(

1

γ(x)
+1

)
log

(
1+ yγ(x)

σ(x)

)
,

,→ m∗(x) = (σ(x),γ(x))
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Pruning step: model selection

• Let Tmax be the maximal tree obtained in the first phase and Kmax the number
of its leaves

• Consists in the extraction of a subtree from Tmax

• Penalized criterion (nT number of leaves of tree T)

Cα(T) =
n∑

i=1
φ(Yi,mRT

(Xi))+αnT

• α> 0 is chosen by cross-validation

• Denote T̂K the best tree with K leaves according to this criterion, T∗
K the best

tree with K leaves for the criterion E[Cα(T)].

• T̂ the tree minimizing the penalized criterion, K̂ its number of leaves.

• kn = nombre d’observations au-dessus du seuil u
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Consistency of the algorithm

• Let ‖T −U‖2
2 =

∫
(T(x)−U(x))2dP(x).

Consistency of the tree
Under some assumptions,

P
(‖TK −T∗

K ‖2
2 ≥ t

) ≤ 2

{
exp

(
− C1knt

K [logn]2

)
+exp

(
− C2knt1/2

K 1/2 logn

)}
+ C3K

knt3/2
,

and

E
[‖T̂K −T∗

K ‖2
2

]≤ C4
K (logn)2 log(n/kn)

kn
.
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Consistency of pruning step

• Let K0 denote the number of leaves of the "best" T∗
K according to E[Cα(T)].

Consistency of the pruning step
Under some assumptions,

E[‖T̂ −T∗
K0
‖2] ≤ C4

K0(logn)2 log(n/kn)

kn
.
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Application to real data: cyber-claims
(Farkas et al, 2020)

• Privacy Rights Clearinghouse (nonprofit association)

• Founded in 1992

• Publicly available

• Benchmark for Cyber event analysis

• Aim at raising awareness about privacy issues.

• Chronology of data breaches maintained from 2005.

• Gathering events information from multiple sources:
• US Government Agencies (Federal level–HIPAA): Health domain, obligation to

declare any breach that affects more than 500 individuals
• US Government Agencies (State level): since 2018, each state has a specific

legislation related to data breaches
• Media
• Non profit organizations.

• Focus on the Tail of the distribution
• Consider only the number of affected records above 27 000
• Fit a GPD CART
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Application to real data: cyber-claims
Farkas et al, 2020
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Application to real data: cost prediction of floods in France

• Goal = improve the cost prediction of an event of floods, shortly after its
occurrence in France

• In collaboration with MRN (Mission risques naturels) and partnership with
Fédération Française des Assurances

• Access to a large volume of events: all events of floods that have been
identified as "CAT NAT" over the past 20 years in France
→ Events built by the MRN from claims reported by insurance companies

• Database fed by 13 contributors including major French insurance companies

• Including 70% of the total amount paid for non life insurance

• 31 000 events

• Focus on the Tail of the distribution
• Consider only the events with a cost larger than u = 1e5
• Fit a GPD CART
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Application to real data: floods
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Conclusion

• Propose a methodology to study extreme claims by taking into account
• heterogeneity,
• impact of the covariates
• evolution through time

• Give theoritical guarantees

• Advantage: interpretation.

• Drawbacks: the robustness of the tree structure and the estimator.

• Future works: consider random forest

• Corresponding article:
S. Farkas, O. Lopez and M. Thomas. Cyber claim analysis through Generalized
Pareto Regression Trees with applications to insurance pricing and reserving,
Preprint
https://hal.archives-ouvertes.fr/hal-02118080v2/document
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